Computation of Pseudospectral Abscissa for Large Scale Nonlinear Eigenvalue Problems
نویسندگان
چکیده
We present an algorithm to compute the pseudospectral abscissa for a nonlinear eigenvalue problem. The algorithm relies on global under-estimator and over-estimator functions for the eigenvalue and singular value functions involved. These global models follow from eigenvalue perturbation theory. The algorithm has three particular features. First, it converges to the globally rightmost point of the pseudospectrum, and it is immune to nonsmoothness. The global convergence assertion is under the assumption that a global lower bound is available for the second derivative of a singular value function depending on one parameter. It may not be easy to deduce such a lower bound analytically, but assigning large negative values works robustly in practice. Second, it is applicable to large scale problems since the dominant cost per iteration stems from computing the smallest singular value and associated singular vectors, for which efficient iterative solvers can be used. Furthermore, a significant increase in computational efficiency can be obtained by subspace acceleration, i.e., by restricting the domains of the linear maps associated with the matrices involved to small but suitable subspaces, and solving the resulting reduced problems. Occasional restarts of these subspaces further enhance the efficiency for large scale problems. Finally, in contrast to existing iterative approaches based on constructing low rank perturbations and rightmost eigenvalue computations, the algorithm only relies on computing singular values of complex matrices. Hence, the algorithm does not require solutions of nonlinear eigenvalue problems, thereby further increasing efficiency and reliability. This work is accompanied by a robust implementation of the algorithm, that is publicly available.
منابع مشابه
An Iterative Method for Computing the Pseudospectral Abscissa for a Class of Nonlinear Eigenvalue Problems
where A1, . . . , Am are given n × n matrices and the functions p1, . . . , pm are assumed to be entire. This does not only include polynomial eigenvalue problems but also eigenvalue problems arising from systems of delay differential equations. Our aim is to compute the -pseudospectral abscissa, i.e. the real part of the rightmost point in the -pseudospectrum, which is the complex set obtained...
متن کاملCriss-Cross Type Algorithms for Computing the Real Pseudospectral Abscissa
The real ε-pseudospectrum of a real matrix A consists of the eigenvalues of all real matrices that are ε-close in spectral norm to A. The real pseudospectral abscissa, which is the largest real part of these eigenvalues for a prescribed value ε, measures the structured robust stability of A w.r.t. real perturbations. In this report, we introduce a criss-cross type algorithm to compute the real ...
متن کاملNew Algorithms for Computing the Real Structured Pseudospectral Abscissa and the Real Stability Radius of Large and Sparse Matrices
We present two new algorithms for investigating the stability of large and sparse matrices subject to real perturbations. The first algorithm computes the real structured pseudospectral abscissa and is based on the algorithm for computing the pseudospectral abscissa proposed by Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192]. It entails finding the rightmost eigenva...
متن کاملA predictor-corrector type algorithm for the pseudospectral abscissa computation of time-delay systems
The pseudospectrum of a linear time-invariant system is the set in the complex plane consisting of all the roots of the characteristic equation when the system matrices are subjected to all possible perturbations with a given upper bound. The pseudospectral abscissa is defined as the maximum real part of the characteristic roots in the pseudospectrum and, therefore, it is for instance important...
متن کاملLocalization Theorems for Nonlinear Eigenvalue Problems
Abstract. Let T : Ω → C be a matrix-valued function that is analytic on some simplyconnected domain Ω ⊂ C. A point λ ∈ Ω is an eigenvalue if the matrix T (λ) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin’s theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016